280 research outputs found

    A simple model for magnetism in itinerant electron systems

    Full text link
    A new lattice model of interacting electrons is presented. It can be viewed as a classical Hubbard model in which the energy associated to electron itinerance is proportional to the total number of possible electron jumps. Symmetry properties of the Hubbard model are preserved. In the half-filled band with strong interaction the model becomes the Ising model. The main features of the magnetic behavior of the model in the one-dimensional and mean-field cases are studied.Comment: 9 pages, 3 figures, to be published in Physica

    Lees and Moonshine: Remembering Richard III, 1485-1635

    Get PDF
    Published version of article deposited in accordance with Sherpa Romeo guidelines. © University of Chicago Press, 2010publication-status: AcceptedNot long after Shakespeare’s birth (1564) the last witnesses to the reign of Richard III (1483-85) would have reached the end of their lives. Richard III (c. 1592) occupies a distinctive historical moment in relation to its subject – a period after the extinction of living memory, but still within the horizon of communicative memory, the period in which stories and recollections may be transmitted across multiple generations. This essay explores how memories and “postmemories” of Richard’s reign were preserved, transmitted and transformed over the course of the sixteenth century and into the seventeenth. Whilst reflecting the powerful influence of emerging contexts including the Reformation and, ultimately, Shakespeare’s play, these memories remained distinct from and sometimes at odds with textual history. They survived because they offered their bearers a resource for interpreting and resisting the predicaments of the present, from the problem of tyranny to the legacies of the Reformation

    Narcissistic Self-Sorting of n-Acene Nano-Ribbons yielding Energy-Transfer and Electroluminescence at p-n Junctions

    Get PDF
    The 2,3-didecyloxy-derivative of an n-type anthracene (n-BG) and a p-type tetracene (p-R) have been synthesized and their self-assembly into nano-ribbons studied. Hyperspectral fluorescence imaging revealed their narcissistic self-sorting, leading to separated nanoribbons emitting with very different colors (blue or green for n-BG, depending on the growth solvent, and red for p-R). It is unique that the usual origins of self-sorting, such as specific H-bonding, different growth kinetics, or incompatible steric hindrance can be ruled out. Hence, the narcissistic behaviour is herein proposed to originate from a sofar unconsidered cause: the discrepancy between the quadrupolar character of n-BG and dipolar character of p-R. At the pn-junctions of these nanoribbons, inter-ribbon FRET and electro-luminescence switch-on were observed by fluorescence microscopy.Modulation of Organic Optic Information InterfacesFabrication Supramoléculaire de Dispositifs OLED Haute Résolution par voie ImprimableSoft Materials Advanced Research Training Networ

    Narcissistic self-sorting of n-acene nano-ribbons yielding energy-transfer and electroluminescence at p–n junctions

    Get PDF
    The 2,3-didecyloxy derivative of an n-type anthracene (n-BG) and a p-type tetracene (p-R) have been synthesized and their self-assembly into nano-ribbons studied. Hyperspectral fluorescence imaging revealed their narcissistic self-sorting, leading to separated nanoribbons emitting with very different colors (blue or green for n-BG, depending on the growth solvent, and red for p-R). It is unique that the usual origins of self-sorting, such as specific H-bonding, different growth kinetics, or incompatible steric hindrance can be ruled out. Hence, the narcissistic behaviour is herein proposed to originate from a so-far unconsidered cause: the discrepancy between the quadrupolar character of n-BG and dipolar character of p-R. At the p–n junctions of these nanoribbons, inter-ribbon FRET and electro-luminescence switch-on were observed by fluorescence/luminescence microscopy.Fabrication Supramoléculaire de Dispositifs OLED Haute Résolution par voie ImprimableModulation of Organic Optic Information Interface

    Insulin Detemir in the Treatment of Type 1 and Type 2 Diabetes

    Get PDF
    Insulin detemir is a soluble long-acting human insulin analogue at neutral pH with a unique mechanism of action. Following subcutaneous injection, insulin detemir binds to albumin via fatty acid chain, thereby providing slow absorption and a prolonged metabolic effect. Insulin detemir has a less variable pharmacokinetic profile than insulin suspension isophane or insulin ultralente. The use of insulin detemir can reduce the risk of hypoglycemia (especially nocturnal hypoglycemia) in type 1 and type 2 diabetic patients. However, overall glycemic control, as assessed by glycated hemoglobin, is only marginally and not significantly improved compared with usual insulin therapy. The weight gain commonly associated with insulin therapy is rather limited when insulin detemir is used. In our experience, this new insulin analogue is preferably administrated at bedtime but can be proposed twice a day (in the morning and either before the dinner or at bedtime). Detemir is a promising option for basal insulin therapy in type 1 or type 2 diabetic patients

    Beyond trees: Mapping total aboveground biomass density in the Brazilian savanna using high-density UAV-lidar data

    Get PDF
    Tropical savanna ecosystems play a major role in the seasonality of the global carbon cycle. However, their ability to store and sequester carbon is uncertain due to combined and intermingling effects of anthropogenic activities and climate change, which impact wildfire regimes and vegetation dynamics. Accurate measurements of tropical savanna vegetation aboveground biomass (AGB) over broad spatial scales are crucial to achieve effective carbon emission mitigation strategies. UAV-lidar is a new remote sensing technology that can enable rapid 3-D mapping of structure and related AGB in tropical savanna ecosystems. This study aimed to assess the capability of high-density UAV-lidar to estimate and map total (tree, shrubs, and surface layers) aboveground biomass density (AGBt) in the Brazilian Savanna (Cerrado). Five ordinary least square regression models esti-mating AGBt were adjusted using 50 field sample plots (30 m × 30 m). The best model was selected under Akaike Information Criterion, adjusted coefficient of determination (adj.R2), absolute and relative root mean square error (RMSE), and used to map AGBt from UAV-lidar data collected over 1,854 ha spanning the three major vegetation formations (forest, savanna, and grassland) in Cerrado. The model using vegetation height and cover was the most effective, with an overall model adj-R2 of 0.79 and a leave-one-out cross-validated RMSE of 19.11 Mg/ha (33.40%). The uncertainty and errors of our estimations were assessed for each vegetation formation separately, resulting in RMSEs of 27.08 Mg/ha (25.99%) for forests, 17.76 Mg/ha (43.96%) for savannas, and 7.72 Mg/ha (44.92%) for grasslands. These results prove the feasibility and potential of the UAV-lidar technology in Cerrado but also emphasize the need for further developing the estimation of biomass in grasslands, of high importance in the characterization of the global carbon balance and for supporting integrated fire management activities in tropical savanna ecosystems. Our results serve as a benchmark for future studies aiming to generate accurate biomass maps and provide baseline data for efficient management of fire and predicted climate change impacts on tropical savanna ecosystems

    Enhanced Odor Discrimination and Impaired Olfactory Memory by Spatially Controlled Switch of AMPA Receptors

    Get PDF
    Genetic perturbations of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) are widely used to dissect molecular mechanisms of sensory coding, learning, and memory. In this study, we investigated the role of Ca(2+)-permeable AMPARs in olfactory behavior. AMPAR modification was obtained by depletion of the GluR-B subunit or expression of unedited GluR-B(Q), both leading to increased Ca(2+) permeability of AMPARs. Mice with this functional AMPAR switch, specifically in forebrain, showed enhanced olfactory discrimination and more rapid learning in a go/no-go operant conditioning task. Olfactory memory, however, was dramatically impaired. GluR-B depletion in forebrain was ectopically variable (“mosaic”) among individuals and strongly correlated with decreased olfactory memory in hippocampus and cortex. Accordingly, memory was rescued by transgenic GluR-B expression restricted to piriform cortex and hippocampus, while enhanced odor discrimination was independent of both GluR-B variability and transgenic GluR-B expression. Thus, correlated differences in behavior and levels of GluR-B expression allowed a mechanistic and spatial dissection of olfactory learning, discrimination, and memory capabilities
    corecore